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sonvolution, Correlation, and Structure Function

eg+xh= f_ﬂﬂ g(t — TYh(T)dr

e Corr{g,h) = f g(t 4+ TYh(T)dT

o Dy(t1,t2) = (lg(t1) — g(22)I") (Structure Function)
egxh << G(fIH(f) (Convolution Theorem)
e Corr(g,h) < G(f)H*'(f) (Correlation Theorem)
e Corr(g, g) <= |G{f}|? (Wiener-Khinchin-Theorem)

lTDta]iner—/ IR () [2dt = / H(#)2df

(Parscval’s Theorem)




56 2. The Barth’s Atmosphere and Space
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Fig. 2.13. Sr:hema.tic representatinn of the generation of turbulence in the at-
mosphere by different obstacles. The amplitude of the temperature flucluations
depends on the amplitude ol the turbulence and on Lhe deviation of Lthe aclual
temperature gradieni [rom the adiabatic gradient. The scales L, L2, Ls are char-

acteristic of the external scales of turbulence caused by wind arcund the obstacles
1,2 and 3




The Kolmogorov Turbulence Model

¢ The Reynolds number Re = V L /i for atmospheric flows is
of order. Re & 10%, i.e, the atmosphere is highly turbulent.

¢ Turbulent energy is generated on large scale I,, dissipated

on small scale I,.
e Lj is called “outer scale®, Iy “inner scale”.

@ In the “inertial range” between I; and L, there is a uni-

versal description for the turbulence spectrum.

¢ The only two relevant parameters are the rate of energy

generation € and the kinematic viscosity v.




The Structure Function for Kolmogorov Turbulence

& The units of v are m?s~1, those of £ are Js1kg ! =m?2s73,
e The velocity structure function can be written as:

(lv(R1) — v(Re)[")
a- f{|R— R/ 3)

-D't:l (Rl'} RE)

|

» The dimensions of « are velocity squared = o = */2g1/2,
» The dimensions of 3 are length = 8 = v%/4%¢~1/4,
¢ In the inertial range the dependence on ¥ must drop out =-

Dﬂ(Rlﬁ RE) — Cf! IRI — REF’IE 3

where C? is a constant describing the turbulence strength.




Structure Function and PSD of Refractive Index

e Turbulence carries “parcels” of air with different tempera-

ture, and thus with different index of refraction.

# The corresponding structure functions are:

DT(Rl, Rg) = C%- .
Dn(Rh Rg) —_ C}E\T -

Ry — Ry[*® | and
Rl ‘_‘ RElwg ¥

with Cy = (78 . 107 %P

mbar] /T?[K]) - Cr -

e The structure function I is related to the covariance B by:

D(R) = 2(B(0) — B(R))

& The covariance is the Fourier transform of the power spectral

density ® (Wiener-Khinchin theorem).

e For Kolmogorov turbulence ®(x) «x &~

5/3




2.6 Turbulence Structure of the Earth’s Atmosphere 55

h 1 T | [ [ 1 | i

log Elx}

] ] 1 ] 1 ] L] |
 km? Im™" 1 mm

Wave numbcer &

Fig. 2.12. One-dimensional power spectrum F{x) of the velocily fluctuations in
a turbulent fluid, where the turbulence is isotropic and fully developed between
the two scales Ly and I (turbulence obeying Kolmogorov’s law in this interval).
The corresponding wave numbers are K, = 1/Lp and kar = 1/ly. The ordinate is
log E(k). A variation in intensity of the turbulence {or of the energy injected at the
scale L) results in a verlical shilt of the curve




Effects of Turbulent Layers

We look at the propagation of a wavefront ¥({x) = expi¢{x)
through a turbulent layer of thickness dh at height h. The
phase ghift: produced by refractive index fluctuations is

b(z) = k [ dzn(z, 2)
where &k = 27 /A,

The coherence function of the wavefront is:
Br(r) = (= + r)v*(z))
= (expi[d(z) — ¢z + )]
= oxp —}(|6(z) ~ bz + 7))
= exp —3Dy(r)

We have to calculate D,(r).




Calculation of the Phase Structure Function

For dh much larger than the correlation scale of the fluctua-

tions, the covariance of ¢ can be written as:

By(r) = {(p(z)¢(z + 7))
= kﬂﬁhff; dz Bn(r,z) =—%
Dy(r) = 2(Bu(0) — By(r))

2k?dh [*°_dz (Bn(0, z) — By(r, 2))
k?8h {7 dz (Dn(r,2z) — Dn(0, 2))
= KSR CY, [, dz (! + 277 — 2219
T L 1 ;
_ O gy oo o
5T(Z)
2.914 k*8h C3, °/3
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Phase Coherence Function and Fried Parameter

The phase coherence function for a turbulent layer is now:
Bj(r) = exp [—% (2.914 k*C%, 5h 'rﬁ"rﬂ)]

Integration over the whole atmosphere, and taking into ac-

count the zenith angle z, gives:

B(r) = exp [—1 (2.914 k%(sec 2)r¥/* [ dh CZ, (k)
We now define the Fried parameler ro by:

ro = [0.423 k*(sec z) [ dh CL(R)] "

and can write

B(r) = exp [—3*44( )5’{3] , D{r)= 6.88( )5}’3
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Optical Image Formation

¢ The complex amplitude A of a wave ¥ diffracted at an aper-
ture P with area II is given by Huygens’ principle:

A(EE). —= :/l—ﬁfi,b{a:)P(m) exp(—2miax/A)dx

¢ With v = =/\:
A(@) = = FTl(u) P(w)

¢ The illumination in the focal plane {(“point spread func-

tion”) ia:
1 .
S(a) = |Ala)|* = = | FT [ (u) P{u)]]?
¢ Autocorrelation theorem:

(S(£)) = B(f) - T(f) with T(f) = = [ P)P"(u + f)du




Diffraction-Limited and Seeing-Limited Images

» Definition of resolving power R of an optical system:

R = [ B(f)T()df

® In the absence of turbulence, B = 1, and

1 _
B = [T(f)df = ﬁij(u)P'(u + fldudf
1 , T { DN
¢ For strong turbulence, T' = 1 in the region where B is non-

zero, and

Rum = [ B(f)df = [exp (—K %) df

b7 | 6\ g—6/5 _ OTF W1 5/3y 78T prgy 2
= TEK /= ?P(g)(&‘i‘l (A ) =—(—]




Significance of the Fried Parameter rg

e The effective resolution of long exposures through the at-
mosphere is the same as the resolution obtained with a tele-

scope of diameter .

e The phase variance over an aperture with diameter r, is

approximately 1 rad?®.

&g .depends on the turbulence profile C% (h), the zenith angle

z, and the observing wavelength X.

e The wavelength dependence is ry oc A%/5; this leads to an

image size (“seeing”) a o< A/ry ox A71/5,

® At good sites, typical values for ry at A = 500 nm are in the

range 10...20cm; this corresponds to o = 0.5”...1".




The Strehl Ratio

e The quality of an imaging system is often measured by the
Strehl ratio &, defined as the peak intensity in the image
divided by the peak intensity in a diffraction-limited image.

e For Gaussian fluctuations, § = exp(—u-i).

¢ The Hubble Space Telescope has S =~ 0.1 (without correc-

tive optics).
e A telescope with diameter ry gives 5 = 0.37.

o If § 2 0.1, image deconvolution software can usually be
used fto obtain diffraction-limited images, but the dynamic

range 1s limited,




The Taylor “Frozen Turbulence” Hypothesis and 1y

¢ The time constant for changes in the turbulence pattern is
usually much Ionger than the time it takes the wind to blow

the turbulence past the telescope aperture.
¢ Atmospheric turbulence is often dominated by a single layer.

¢ The temporal behavior of the turbulence can therefore be
characterized by a time constant 1y = ry/v, where v is the

wind velocity in the dominant layer.

e Observations with exposure time t << 7o {s0-called “short
exposures”) produce images through one instantaneous re-
alization of the atmosphere {“speckle images”}); observa-
tions with ¢ >> 73 average over the atmospheric random

Process.



. Average Paranal turbulence/wind profile
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Anmsoplanatism

e The light from two stars separated by an angle @ passes
through different patches of the atmosphere and therefore

experiences different phase variations.

s It can be shown that the variance of the phase difference

between the two stars is given by:
i 5/3
{og) = (a_u)
e In this relation, the isoplanatic angle is given by:
B0 = [2.914k"(sec z)%/3 [ dh acf,,],(.*m)fﬁ"ﬂ"ﬂ]_3"F ?

e Note: the short-exposure point spread functions for two
stars separated by more than 8, are different, but the long-

exposure psf’s are (nearly) identiecal.

¢ Anisoplanatism is dominated by high-altitude turbulence.



Scintillation

® The geometric optics approximation of propagation is only

valid lor propagation paths shorter than the Fresnel length
=75/ )'*

e For vy = 10cm, A = 5300nm, the Fresnel length is 20 km.

The geometric approximation is therefore a good first-order

approach, butl diffraction 1s not negligible, especially at short

wavelengths, large zenith angles, and poor observing sites.

e Diffraction gives rise to scinfillation, i.e., intensity fluctua-
tions that are important for photometry if the exposure

time 15 short.

e Scintillation is an interference phenomenon, and therefore
highly chromatic.

¢ Scintillation is dominated by high-altitude turbulence.




I'ia 4. Telescopes and Images

Table 4.6. The first [ew Zernike polynomials and corresponding optical aberralions

Radial Azimuthal frequency m

degreen m=10 m=1 mo=2 m =23
0 Zy =1
Piston
1 Zo = 2rcos o
33 = 2¢ sin x
Tip-tilt
2 Zi=+13 Zs = +/6r7 sin 20
(2r* — 1) . Zg = Er? cos 2a
Defocus Astigmatism
3 Z7 = v/B(3r° Zo = /Br®
- —~2r}sina X Bin 3c
Zs = v/8(3° Zyp = 8r°
—21r) CO8 ¢ % cos So
Comza
4 Zi1 =58 Zi2 = /10
(671 — 6r° + 1) (4r* — 372) cos 2
Spherical Ziy =+/10
aberration {47 — 3r%)sin 20

Table 4.6 gives the classification, the formula and the equivalent aberra-
tions in classical optics for the first few Zernike polynomials. This basis is
orthogonal on a circular pupil
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